首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90436篇
  免费   2970篇
  国内免费   2915篇
  2023年   588篇
  2022年   739篇
  2021年   2075篇
  2020年   1239篇
  2019年   2041篇
  2018年   1415篇
  2017年   1041篇
  2016年   1667篇
  2015年   3710篇
  2014年   7060篇
  2013年   6964篇
  2012年   5206篇
  2011年   6258篇
  2010年   4454篇
  2009年   4414篇
  2008年   4473篇
  2007年   4880篇
  2006年   3495篇
  2005年   2974篇
  2004年   2105篇
  2003年   1680篇
  2002年   1546篇
  2001年   1134篇
  2000年   1100篇
  1999年   1076篇
  1998年   958篇
  1997年   865篇
  1996年   820篇
  1995年   1069篇
  1994年   987篇
  1993年   1003篇
  1992年   967篇
  1991年   914篇
  1990年   852篇
  1989年   814篇
  1988年   841篇
  1987年   833篇
  1986年   567篇
  1985年   951篇
  1984年   1557篇
  1983年   1178篇
  1982年   1544篇
  1981年   1213篇
  1980年   1037篇
  1979年   1077篇
  1978年   533篇
  1977年   517篇
  1976年   469篇
  1975年   348篇
  1973年   329篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
The oncoprotein murine double minute 2 (MDM2) is an E3 ligase that plays a prominent role in p53 suppression by promoting its polyubiquitination and proteasomal degradation. In its active form, MDM2 forms homodimers as well as heterodimers with the homologous protein murine double minute 4 (MDMX), both of which are thought to occur through their respective C-terminal RING (really interesting new gene) domains. In this study, using multiple MDM2 mutants, we show evidence suggesting that MDM2 homo- and heterodimerization occur through distinct mechanisms because MDM2 RING domain mutations that inhibit MDM2 interaction with MDMX do not affect MDM2 interaction with WT MDM2. Intriguingly, deletion of a portion of the MDM2 central acidic domain selectively inhibits interaction with MDM2 while leaving intact the ability of MDM2 to interact with MDMX and to ubiquitinate p53. Further analysis of an MDM2 C-terminal deletion mutant reveals that the C-terminal residues of MDM2 are required for both MDM2 and MDMX interaction. Collectively, our results suggest a model in which MDM2-MDMX heterodimerization requires the extreme C terminus and proper RING domain structure of MDM2, whereas MDM2 homodimerization requires the extreme C terminus and the central acidic domain of MDM2, suggesting that MDM2 homo- and heterodimers utilize distinct MDM2 domains. Our study is the first to report mutations capable of separating MDM2 homo- and heterodimerization.  相似文献   
82.
Although the epidermal growth factor receptor (EGFR), also known as HER1, has been studied for over a decade, it continues to be a molecule of great interest and focus of investigators for development of targeted therapies. The marketed monoclonal antibody cetuximab binds to HER1, and thus might serve as the basis for creation of imaging or therapies that target this receptor. The potential of cetuximab as a vehicle for the delivery of α-particle radiation was investigated in an intraperitoneal tumor mouse model. The effective working dose of 10 μCi of 212Pb-cetuximab was determined from a dose (10–50 μCi) escalation study. Toxicity, as indicated by the lack of animal weight loss, was not evident at the 10 μCi dose of 212Pb-cetuximab. A subsequent study demonstrated 212Pb-cetuximab had a therapeutic efficacy similar to that of 212Pb-trastuzumab (p = 0.588). Gemcitabine given 24 h prior to 212Pb-cetuximab increased the median survival from 174 d to 283 d, but carboplatin suppressed the effectiveness of 212Pb-cetuximab. Notably, concurrent treatment of tumor-bearing mice with 212Pb-labeled cetuximab and trastuzumab provided therapeutic benefit that was greater than either antibody alone. In conclusion, cetuximab proved to be an effective vehicle for targeting HER1-expressing tumors with α-radiation for the treatment of disseminated intraperitoneal disease. These studies provide further evidence that the multimodality therapy regimens may have greater efficacy and benefit in the treatment of cancer patients.  相似文献   
83.
A series of furazan and furoxan sulfonamides were prepared and studied for their ability to inhibit human carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I, hCA II, hCA IX, and hCA XII. The simple methyl substituted products 35 were potent inhibitors. Differing structural modifications of these leads had differing effects on potency and selectivity. In particular, products in which the sulfonamide group is separated from the hetero ring by a phenylene bridge retained high potency only on the hCA XII isoform. The sulfonamides 35 exerted intraocular pressure (IOP) lowering effects in vivo in hypertensive rabbits more efficiently than dorzolamide. Some other products (3942), although less effective in vitro hCA II/XII inhibitors, also effectively lowered IOP in two different animal models of glaucoma.  相似文献   
84.
85.
In the developing wheat grain, photosynthate is transferred longitudinally along the crease phloem and then laterally into the endosperm cavity through the crease vascular parenchyma, pigment strand and nucellar projection. In order to clarify this cellular pathway of photosynthate unloading, and hence the controlling mechanism of grain filling, the potential for symplastic and apoplastic transfer was examined through structural and histochemical studies on these tissue types. It was found that cells in the crease region from the phloem to the nucellar projection are interconnected by numerous plasmodesmata and have dense cytoplasm with abundant mitochondria. Histochemical studies confirmed that, at the stage of grain development studied, an apoplastic barrier exists in the cell walls of the pigment strand. This barrier is composed of lignin, phenolics and suberin. The potential capacity for symplastic transfer, determined by measuring plasmodesmatal frequencies and computing potential sucrose fluxes through these plasmodesmata, indicated that there is sufficient plasmodesmatal cross-sectional area to support symplastic unloading of photosynthate at the rate required for normal grain growth. The potential capacity for membrane transport of sucrose to the apoplast was assessed by measuring plasma membrane surface areas of the various cell types and computing potential plasma membrane fluxes of sucrose. These fluxes indicated that the combined plasma membrane surface areas of the sieve element–companion cell (se–cc) complexes, vascular parenchyma and pigment strand are not sufficient to allow sucrose transfer to the apoplast at the observed rates. In contrast, the wall ingrowths of the transfer cells in the nucellar projection amplify the membrane surface area up to 22-fold, supporting the observed rates of sucrose transfer into the endosperm cavity. We conclude that photosynthate moves via the symplast from the se–cc complexes to the nucellar projection transfer cells, from where it is transferred across the plasma membrane into the endosperm cavity. The apoplastic barrier in the pigment strand is considered to restrict solute movement to the symplast and block apoplastic solute exchange between maternal and embryonic tissues. The implications of this cellular pathway in relation to the control of photosynthate transfer in the developing grain are discussed.  相似文献   
86.
Lipopolysaccharides (LPS) are essential envelope components in many Gram-negative bacteria and provide intrinsic resistance to antibiotics. LPS molecules are synthesized in the inner membrane and then transported to the cell surface by the LPS transport (Lpt) machinery. In this system, the ATP-binding cassette (ABC) transporter LptB2FGC extracts LPS from the inner membrane and places it onto a periplasmic protein bridge through a poorly understood mechanism. Here, we show that residue E86 of LptB is essential for coupling the function of this ATPase to that of its partners LptFG, specifically at the step where ATP binding drives the closure of the LptB dimer and the collapse of the LPS-binding cavity in LptFG that moves LPS to the Lpt periplasmic bridge. We also show that defects caused by changing residue E86 are suppressed by mutations altering either LPS structure or transmembrane helices in LptG. Furthermore, these suppressors also fix defects in the coupling helix of LptF, but not of LptG. Together, these results support a transport mechanism in which the ATP-driven movements of LptB and those of the substrate-binding cavity in LptFG are bi-directionally coordinated through the rigid-body coupling, with LptF’s coupling helix being important in coordinating cavity collapse with LptB dimerization.  相似文献   
87.
Alternative ORFs (AltORFs) are unannotated sequences in genome that encode novel peptides or proteins named alternative proteins (AltProts). Although ribosome profiling and bioinformatics predict a large number of AltProts, mass spectrometry as the only direct way of identification is hampered by the short lengths and relative low abundance of AltProts. There is an urgent need for improvement of mass spectrometry methodologies for AltProt identification. Here, we report an approach based on size-exclusion chromatography for simultaneous enrichment and fractionation of AltProts from complex proteome. This method greatly simplifies the variance of AltProts discovery by enriching small proteins smaller than 40 kDa. In a systematic comparison between 10 methods, the approach we reported enabled the discovery of more AltProts with overall higher intensities, with less cost of time and effort compared to other workflows. We applied this approach to identify 89 novel AltProts from mouse liver, 39 of which were differentially expressed between embryonic and adult mice. During embryonic development, the upregulated AltProts were mainly involved in biological pathways on RNA splicing and processing, whereas the AltProts involved in metabolisms were more active in adult livers. Our study not only provides an effective approach for identifying AltProts but also novel AltProts that are potentially important in developmental biology.  相似文献   
88.
89.
Native chemical ligation has enabled the chemical synthesis of proteins for a wide variety of applications (e.g., mirror-image proteins). However, inefficiencies of this chemoselective ligation in the context of large or otherwise challenging protein targets can limit the practical scope of chemical protein synthesis. In this review, we focus on recent developments aimed at enhancing and expanding native chemical ligation for challenging protein syntheses. Chemical auxiliaries, use of selenium chemistry, and templating all enable ligations at otherwise suboptimal junctions. The continuing development of these tools is making the chemical synthesis of large proteins increasingly accessible.  相似文献   
90.
The effect of different carbon and nitrogen sources on the production of toxin by Clostridium argentinense was examined. The toxin production by C. argentinense in coculture with Pseudomonas mendocina increased in all the cases in relation to that produced by monocultures independent of the nature of the source. Using dextrin as carbon source C. argentinense produced the highest levels of toxin both in monocultures (300 LD50/mL) and in cocultures with P. mendocina (5000 LD50/mL). Experiments run in a microfermenter showed that the slow growth of cocultures associated with the assimilation of dextrin and the pH and Eh profiles favoured the production of toxin. Of the nitrogen sources assayed, corn steep liquor sustained the highest levels of toxin in both monocultures and cocultures with 3 and 2.8 fold increases with respect to that obtained using proteose peptone. The toxin production by C. argentinense cultures and C. argentinenseP. mendocina cocultures was highly dependent on the nature of the carbon and nitrogen sources used in the culture media. Growth of C. argentinense on substrates slowly assimilated stimulated the production of toxin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号